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Background

 Large language models (LLMs) have remarkable language understanding, generation,
generalization, and reasoning abilities
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Background

e Large language models (LLMs) in information retrieval (IR)
* Opportunities
e LLMs directly as task solvers
 LLMs for data augmentation (e.g., training retrievers/re-rankers)
 LLMs for evaluation (e.g., generating relevance judgments)
 Challenges
 Low efficiency
* Unfaithful generation
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Background

* Large language models (LLMs) as text re-rankers
* achieve state-of-the-art performance
 hard to be applied in practice due to significant computational overhead
 the average query latency (re-ranking 100 items per query) for Flan-t5-xx| (11B) of
is around 4 seconds, on a NVIDIA RTX A6000 GPU [1]

rPassage: {passage} ,
. Logits
Query: {query} - Yes / No
Does the passage answer the query? Answer yes_no

. 'Yes' or 'No'

J

LLM-based re-ranker
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* Limitation
* Applying a fixed re-ranking cut-off (e.g., 200, 1000) to all queries

Model Source DEV DL19 DL20
size preyv. top-£ | MRR@10 R@1k | nDCG@10 | nDCG@10
Retrieval
BM25 (Lin et al., 2021) |- s IC|| 184 853 | 506 | 480
RepLLaMA | 7B | - C|| 412 994 | 743 | 721
Reranking
monoBERT (Nogueira et al., 2019) | 110M | BM25 1000 | 372 853 | 723 | 722

RankLLaMA | 7B | RepLLaMA 200 | 449 94 | 756 | 774
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Motivation (fixed cut-offs vs. query-specific cut-offs)

* Query-specific re-ranking cut-offs improve efficiency
* Individual queries have different oracle cut-offs with a wide range
 Adeeper fixed cut-off wastes computational resources
* Ashallower fixed cut-off hurts re-ranking quality for queries needing a deeper cut-off
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For a query, an oracle cut-off is the minimum re-ranking cutoff producing the highest nDCG@10 value 12



Motivation (fixed cut-offs vs. query-specific cut-offs)

Query-specific re-ranking cut-offs improve effectiveness

* Oracle cut-offs show statistically significant improvements over all fixed cut-offs

 Adeeper fixed cut-off

 does not always result in improvement (consistent with [1])
 even is detrimental to re-ranking quality (consistent with [1])
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Motivation (How to predict query-specific cut-offs)

e Ranked list truncation (RLT)
* predicts how many items in a ranked list should be returned
 optimizes the truncated ranked list regarding a user-defined metric (e.g., F1)
* aids applications where reviewing returned items is costly, e.g., patent or legal search

 We reproduce exiting RLT methods in the context of re-ranking

Target:
maximize a user-defined metric (e.g., F1)
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Reproducibility methodology

* Verify 4 findings on RLT:
* Finding 1: Supervised RLT methods generally perform better than their
unsupervised counterparts (e.g., set a fixed cut-off)

 Finding 2: Distribution-based supervised RLT methods perform better than their
sequential labeling-based counterpart

* Finding 3: Jointly learning RLT with other tasks results in better RLT quality

* Finding 4: When truncating a retrieved list returned by a neural-based retriever,
incorporating its embeddings improves RLT quality
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Reproducibility methodology

Do RLT methods generalize to the context of
 (RQ1)LLM-based re-ranking with a lexical first-stage retriever?

 (RQ2) LLM-based re-ranking with learned sparse or dense first-stage retrievers?

 (RQ3) pre-trained language model-based re-ranking?

16



Reproducibility methodology

 Experimental settings:

e 8 RLT methods

Fixed-k (10, 20, 100, 200, 1000)
Greedy-k

Surprise

BiCut

Choppy

AttnCut

MtCut

LeCut

* Datasets:

Unsupervised
Unsupervised - -

Unsupervised - -

Supervised Sequential labeling-based -

Supervised Distribution-based -

Supervised Distribution-based -

Supervised Distribution-based Jointly learning with other tasks
Supervised Distribution-based Use retriever embeddings

* TREC-DL 19, TREC-DL 20

17



 RQ1: Do RLT methods generalize to the context of LLM-based re-ranking with a lexical
first-stage retriever?
* Fixed re-ranking depths can closely approximate the results of supervised methods
* Supervised RLT methods do not show a clear advantage over fixed re-ranking depths
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 RQ2: Do RLT methods generalize to the context of LLM-based re-ranking with learned
sparse or dense first-stage retriever?
 Supervised methods do not lead to significant improvement in terms nDCG@10
* A fixed re-ranking depth of 20 achieves the best effectiveness/efficiency trade-off
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* RQ3: Do RLT methods generalize to the context of pre-trained language model-based
re-ranking?
 Results are similar to RQ1
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* Error analysis for supervised RLT methods
* They fail to predict a re-ranking cut-off of zero
 They perform worse when truncating RepLLaMA’s retrieved lists
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 We showed that findings on RLT do not generalize well to this new setup:
* Finding 1: Supervised RLT methods generally perform better than their unsupervised
counterparts (e.g., set a fixed cut-off)

 Finding 2: Distribution-based supervised RLT methods perform better than their
sequential labeling-based counterpart

* Finding 3: Jointly learning RLT with other tasks results in better RLT quality

* Finding 4: When truncating a retrieved list returned by a neural-based retriever,
incorporating its embeddings improves RLT quality
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 The type of retriever makes a difference
* With an effective retriever (e.g., SPLADE++/RepLLaMA)
* A fixed re-ranking depth of 20 yields an excellent effectiveness/efficiency trade-off
 Afixed depth>20 does not significantly improve re-ranking quality

 The type of re-ranker (LLM or pre-trained LM-based) does not appear to influence the
findings

 Supervised RLT methods need to improve their ability to predict “0”
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Conclusion

 Contributions

 An empirical analysis in the context of LLM-based re-ranking, shows that

* Effective query-specific re-ranking depths can improve re-ranking efficiency and
effectiveness

 We reproduce RLT methods in the context of LLM-based re-ranking

 The data and code are open-source https://github.com/ChuanMeng/RLT4Reranking
* Future work

* Explore RLT for pairwise and listwise LLM-based re-rankers

* Develop new RLT methods for LLM-based re-ranking

QR code for the repo )


https://github.com/ChuanMeng/RLT4Reranking
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Background—Query performance prediction

 Query performance prediction (QPP)
* Predicts retrieval quality of search system for query without human-labeled
relevance judgments

QPP benefits a variety of applications, e.g., action prediction in conversational search

_____________________________________________________________________________________________________________________________________________________

return the top documents

Ranked list QPP
atturn t

asking a clarifying question |
“sorry, | cannot answer your question” |

_____________________________________________________________________________________________________________________________________________________
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Background—Query Performance Prediction

 There are two types of QPP methods
* Pre-retrieval QPP methods
* f(query) — QPP score
e Post-retrieval QPP methods
* f(query,aranked list) - QPP score

* Post-retrieval QPP methods
 Unsupervised post-retrieval QPP methods
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e Supervised post-retrieval QPP methods
* BERT (query,a ranked list) - QPP score
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* Existing QPP methods typically
 return only a single real-valued score that indicates the retrieval quality for a query
 do not require the predicted score to approximate a specific IR evaluation metric

* Limitations:
 Using a single value to represent different IR evaluation metrics leads to a “one size

fits all” issue; some IR metrics do not correlate well [1]

* Single-score prediction limits the interpretability of QPP

29



Methodology

 Propose a QPP framework using automatically Generated RElevance judgments (QPP-
GenRE
e Decompose QPP into independent subtasks of automatically judging the relevance
of each item in a ranked list to a given query

1 = | —> —p  Relevant e——p
N
2 = | = —p  Relevant =——
D IR metric
3 |=| — Automatica”y e §(7E]EVANT e prediction —>p Precision@5: 0.4
judgin
— juaging
4 — | — e [[T€]EVANT e
N
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Methodology

 Challenges
* Unlike prompting commercial LLMs [1,2], prompting open-source LLMs in a zero-
/few-shot way results in limited performance of relevance judgments
* Predicting recall-oriented metrics requires seeking all relevant items in the corpus
for a query, leading to high computational costs

31



Methodology

e Solutions
 Train an open-source LLM (LLaMA) on human-labeled relevance judgments
* Use a parameter-efficient fine-tuning method, QLoRA

flnstruction: Please assess the relevance of the provided passage\
to the following question. Please output "Relevant” or "Irrelevant”.
Question: {question}
Passage: {passage}

\Output: Relevant/Irrelevant )

* Devise an approximation strategy for predicting recall-oriented metrics
* Onlyjudge a few items in the ranked list for a query and use them to estimate
the metric

32



 Experimental settings:
* QPP baselines
10 unsupervised QPP ones
4 supervised QPP ones
* Datasets:
* TREC-DL19, 20, 21, 22

* Rankers:
e BM25
* ANCE

* Target metrics
* RR@10
* nDCG@10

e Evaluation metrics

* Pearson’s p and Kendall’s T correlation between actual IR metric values and
predicted metric values
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4 Research questions
* RQI1: To what extent does QPP-GenRE improve QPP effectiveness for lexical and neural
rankers in terms of RR@10 compared to state-of-the-art baselines

* RQ2 To what extent does QPP-GenRE improve QPP effectiveness for lexical and neural
rankers in terms of nDCG@10 compared to state-of-the-art baselines?

* RQ3: How deep do we need to automatically judge in a ranked list to effectively
predict nDCG@10°?

* RQ4: To what extent does fine-tuning LLaMA impact the quality of the generated
relevance judgments and QPP effectiveness?

34



* RQl1&2
* QPP-GenRE achieves state-of-the-art QPP quality

* in estimating the retrieval quality of BM25 (lexical) and ANCE (dense)
 interms of RR@10 (precision) and nDCG@10 (recall)

35



* RQ3: How deep do we need to automatically judge in a ranked list to effectively predict
nDCG@10?
* Judging up to 100-200 retrieved items in a ranked list can reach saturation
* (QPP-GenRE can achieve state-of-the-art QPP at shallow judging depth 10
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* RQ4: To what extent does fine-tuning LLaMA impact the quality of the generated relevance
judgments and QPP effectiveness?

* Fine-tuned LLaMA performs better few-shot LLaMA and GPT-3.5 regarding relevance

prediction

 Better quality in generating relevance judgments translates into better QPP quality

Dataset Method Cohen’sx P-p
LLaMA-7B (few-shot) 0.121  0.281
IREC-DLI9 1 aMA-7B (fine-tuned) 0.258  0.538
LLaMA-7B (few-shot) 0.110  0.255
TREC-DL20 1 MA-7B (fine-tuned) 0.238  0.560
GPT-3.5 (text-davinci-003) [29]  0.260 -
TREC-DL 21 LLaMA-7B (few-shot) 0.140 0.237
LLaMA-7B (fine-tuned) 0.333  0.524
LLaMA-7B (few-shot) 0.009  0.109
IREC-DL22 11 MA-7B (fine-tuned) 0.190  0.350

37



* Error analysis
 QPP-GenRE tends to wrongly predict some relevant items as irrelevant (false negatives)

QPP-GenRE TREC-DL 19 assessors TREC-DL 20 assessors

Relevant Irrelevant Relevant Irrelevant

Relevant 752 553 486 763
Irrelevant 1749 6206 1180 8957
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Conclusion

 Contributions
* Propose a new QPP framework, QPP-GenRE, which predicts IR metrics based on
automatically generated relevance judgments
Fine-tune open-source LLMs for generating relevance judgments
Devise an approximation strategy for predicting a recall-oriented IR measure

QPP-GenRE achieves state-of-the-art QPP quality

The data and code are open-sourced https://github.com/ChuanMeng/QPP-GenRE

QR code for the repo 39
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Conclusion and Future Work

Contributions
* The challenge of low efficiency:
 Improve the efficiency of LLM-based re-ranking by using query-specific re-ranking
cut-offs
 The opportunity for LLMs for evaluation
* A new QPP framework using LLM-based generated relevance judgments
* Fine-tune open-source LLMs to generate relevance judgments

Future work

* Propose new RLT methods for LLM-based re-ranking

* Investigate the performance of other open-source LLMs
 Domain-specific scenarios
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