

Predicting the Right Moment for System Initiative in Mixed-Initiative Conversational Search

Chuan Meng 27th August 2024

Background

- Mixed-initiative conversational search (CS)
 - User and system can both take initiative at different times in conversation
 - System initiative-taking has the potential to offend users
- When to take the initiative in a conversation?
 - Structural dependency modelling [1]
 - Query performance prediction (QPP) [2,3]

[1] Meng et al. System Initiative Prediction for Multi-turn Conversational Information Seeking. CIKM 2023
[2] Meng et al. Query Performance Prediction: From Ad-hoc to Conversational Search. SIGIR 2023.
[3] Meng et al. Performance Prediction for Conversational Search Using Perplexities of Query Rewrites. ECIR 2023.

Outline

- Study 1: Structural dependency modelling for CS (CIKM 2023) [12 min]
- □ Study 2: Query performance prediction for CS (SIGIR 2023 & ECIR 2023) [6 min]
- Conclusion and future work [2 min]

Outline

Study 1: Structural dependency modelling for CS (CIKM 2023) [12 min]

- □ Study 2: Query performance prediction for CS (SIGIR 2023 & ECIR 2023) [6 min]
- □ Conclusion and future work [2 min]

System Initiative Prediction for Multi-turn Conversational Information Seeking

Chuan Meng, Mohammad Aliannejadi, Maarten de Rijke CIKM 2023

Task definition

- System initiative prediction (SIP)
 - predicts whether system should take initiative at next turn in information-seeking conversation

Task definition

How well do LLMs perform on SIP?

- Preliminary experiments show:
 - performance of LLMs comparable to that of BERT
 - LLMs lack interpretability and transparency

Methods	MSDialog (%)			
	F1	Precision	Recall	Accuracy
LLaMA-7B	60.22	60.40	60.13	62.15
LLaMA-13B	62.54	62.73	63.21	62.99
LLaMA-33B	58.11	58.24	58.53	58.76
LLaMA-65B	55.30	62.33	60.44	55.93
BERT	60.17	60.25	60.12	61.86

Why do we need a probabilistic graphical model for SIP

- Empirical analysis shows:
 - dependencies between adjacent user-system initiative-taking decisions

Why we need a probabilistic graphical model for SIP

- **Our proposal**: model SIP by conditional random fields (CRFs)
 - CRFs are effective in capturing **dependencies between adjacent decisions**
 - CRFs have greater transparency

Why we need a probabilistic graphical model for SIP

- Empirical analysis shows:
 - Dependencies between an initiative-taking decision and multi-turn features

- Challenge:
 - Vanilla CRFs cannot explicitly model multi-turn features

Why we need a probabilistic graphical model for SIP

• Propose multi-turn feature-aware CRF

 conditions transition matrix between adjacent initiative-taking decisions on multiturn features

Experimental results

• Multi-turn feature-aware CRF achieves SOTA performance on SIP

Methods	MSDialog (%)				
	F1	Precision	Recall	Accuracy	
LLaMA-7B	60.22	60.40	60.13	62.15	
LLaMA-13B	62.54	62.73	63.21	62.99	
LLaMA-33B	58.11	58.24	58.53	58.76	
LLaMA-65B	55.30	62.33	60.44	55.93	
BERT	60.17	60.25	60.12	61.86	
VanillaCRF	62.31	63.24	62.17	64.97	
Ours	65.37	65.79	65.19	67.23 *	

Experimental results

• Multi-turn feature-aware CRF exhibits great transparency

Given System has not taken initiative before

Example:

Turn 1: user asks a question Turn 2 : system asks a clarifying question Given

System has taken initiative at last system turn

System decisions

Example:

Turn 1: user asks a question

Turn 2: system asks a clarifying question Turn 3: user rephrases a new question Turn 4: system returns an answer Given System has taken initiative only before last system turn

Example:

Turn 1: user asks a question

Turn 2: system asks a clarifying question

Turn 3: user answers the clarifying question

Turn 4: system returns an answer

Turn 5: user asks a follow-up question

Turn 6 : system requests information

Conclusion

- Contributions
 - Introduce system initiative prediction (SIP)
 - Propose multi-turn feature-aware CRF to capture two types of dependencies
 - between adjacent user-system initiative-taking decisions
 - between initiative-taking decision and multi-turn features
 - Our method
 - achieves SOTA performance on SIP
 - exhibits great transparency
 - improves downstream action prediction task
 - Data and code open-sourced at <u>https://github.com/ChuanMeng/SIP</u>

QR code for the repo

Outline

- Study 1: Structural dependency modelling for CS (CIKM 2023) [12 min]
- □ Study 2: Query performance prediction for CS (SIGIR 2023 & ECIR 2023) [6 min]
- □ Conclusion and future work [2 min]

Query Performance Prediction for Conversational Search

Chuan Meng, Negar Arabzadeh, Mohammad Aliannejadi and Maarten de Rijke SIGIR 2023 & ECIR 2023

Background—Query performance prediction

- Query performance prediction (QPP)
 - Predicts retrieval quality of search system for query without relevance judgments
 - Widely studied in ad-hoc search
- QPP benefits a variety of applications, e.g., selective query expansion, query variant selection, ranker selection, and query routing
- QPP modelling
 - Unsupervised QPP methods

- Supervised QPP methods
 - BERT (query, a ranked list) \rightarrow QPP score

Background—Conversational search (CS)

- Ad-hoc search vs. CS
 - Self-contained vs. context-dependent queries
 - Deeper ranked list vs. only top of the ranked list

Motivation

- Why do we need QPP for CS?
 - QPP can benefit CS regarding, e.g., clarification need prediction

Unsupervised QPP methods perform on par with fine-tuned BERT models [1]

Fine-tune	d PLM	QPP Methods			
BERT	0.724	WIG	0.552		
BART	0.739	NQC	0.690		
RoBERTa	0.662	SMV	0.680		
		$n(\sigma_{\%})$	0.643		
AUC-ROC on ClariQ test set					

[1] Arabzadeh et al. Unsupervised Question Clarity Prediction Through Retrieved Item Coherency. In CIKM 2022.

Methodology

- How well QPP methods designed for ad-hoc search generalise in CS?
 - Reproduce various QPP methods in CS
 - They generalise well in CS

1.0 0.8 0.6 0.4 0.2 0.0 CAST-19 CAST-20 OR-QuAC

- How to improve QPP for CS?
 - Empirical analysis
 - Lower query rewriting quality yields lower retrieval quality
 - Query rewriting quality provides evidence for QPP
 - Propose perplexity-based QPP framework (PPL-QPP)
 - Evaluate the query rewriting quality via perplexity
 - Inject the quality into the QPP via linear interpolation
 - final QPP score = $\alpha \cdot \frac{1}{perplexity} + (1 \alpha) \cdot QPP$ score
 - PPL-QPP results in higher QPP quality, especially on datasets where query rewriting is challenging

Conclusion

- Contributions
 - A comprehensive reproducibility study that reproduces existing QPP methods in CS
 - A new QPP framework that improves QPP for CS using query rewriting quality
 - The data and code are open-sourced <u>https://github.com/ChuanMeng/QPP4CS</u>

🕮 README

Query Performance Prediction for Conversational Search (QPP4CS)

This is the repository for the papers:

- Query Performance Prediction: From Ad-hoc to Conversational Search (SIGIR 2023)
- Performance Prediction for Conversational Search Using Perplexities of Query Rewrites (QPP++ 2023)

The repository offers the implementation of a comprehensive collection of pre- and post-retrieval query performance prediction (QPP) methods, all integrated within a unified Python/Pytorch framework. It would be an ideal package for anyone interested in conducting research into QPP for ad-hoc or conversational search.

Ξ

Outline

- Study 1: Structural dependency modelling for CS (CIKM 2023) [12 min]
- □ Study 2: Query performance prediction for CS (SIGIR 2023 & ECIR 2023) [6 min]
- **Conclusion and future work [2 min]**

Conclusion and Future Work

- Contributions
 - Structural dependency modelling for CS
 - Query performance prediction (QPP) for CS

Thank you!

Chuan Meng chuanmen@amazon.com c.meng@uva.nl