
System Initiative Prediction and Query Performance Prediction for 
Conversational Information Seeking

Chuan Meng
IRLab

University of Amsterdam
3rd November 2023

1



OutlineBackground

2

• Conversational information seeking (CIS) is concerned with sequences of interactions 
between one or more users and a system, in which the system’s goal is to satisfy the 
users' information needs



OutlineBackground
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• Mixed-initiative conversational information seeking
• User and system can both take initiative at different times in conversation
• System initiative-taking has the potential to offend users

• When to take the initiative in a conversation?
• System initiative prediction
• Query performance prediction (QPP)
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q Study 1: System initiative prediction for CIS (CIKM 2023) [12 min]

q Study 2: QPP for CIS: reproducing existing QPP methods in CIS (SIGIR 2023) [12 min]

q Study 3: QPP for CIS: improve QPP for CIS using query rewriting quality (QPP++2023) [6 min]

q Conclusion [5 min]
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System Initiative Prediction for 
Multi-turn Conversational Information Seeking

Chuan Meng, Mohammad Aliannejadi, Maarten de Rijke
CIKM 2023
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OutlineTask definition
• System initiative prediction (SIP) 
• predicts whether system should take initiative at next turn in information-seeking 

conversation

User

…
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OutlineTask definition
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OutlineHow well do LLMs perform on SIP?
• Preliminary experiments show:

• performance of LLMs comparable to that of BERT
• LLMs lack interpretability and transparency
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OutlineWhy do we need a probabilistic graphical model for SIP
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• Empirical analysis shows:
• dependencies between adjacent user–system initiative-taking decisions



OutlineWhy we need a probabilistic graphical model for SIP
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• Our proposal: model SIP by conditional random fields (CRFs)
• CRFs are effective in capturing dependencies between adjacent decisions
• CRFs have greater transparency

Score score

score score

User decision
at previous turn

System decision
at next turn

N

I : Initiative
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OutlineWhy we need a probabilistic graphical model for SIP
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• Empirical analysis shows:
• Dependencies between an initiative-taking decision and multi-turn features

• Challenge:
• Vanilla CRFs cannot explicitly model multi-turn features



OutlineWhy we need a probabilistic graphical model for SIP
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• Propose multi-turn feature-aware CRF 
• conditions transition matrix between adjacent initiative-taking decisions on multi-

turn features

Given
System has not taken initiative before

Given
System has taken initiative at last 
system turn

Given
System has taken initiative only
before last system turn

Given
System has taken initiative



OutlineExperimental results
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• Multi-turn feature-aware CRF achieves SOTA performance on SIP



OutlineExperimental results
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• Multi-turn feature-aware CRF exhibits great transparency
Given
System has not taken initiative before

Given
System has taken initiative at last system 
turn

Given
System has taken initiative only 
before last system turn

U
se

rd
ec

is
io

ns

System decisions

U
se

rd
ec

is
io

ns

U
se

rd
ec

is
io

ns
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Example:
Turn 1: user asks a question
Turn 2 : system asks a clarifying question

Example:
Turn 1: user asks a question
Turn 2: system asks a clarifying question
Turn 3: user rephrases a new question
Turn 4: system returns an answer

Example:
Turn 1: user asks a question
Turn 2: system asks a clarifying question
Turn 3: user answers the clarifying question
Turn 4: system returns an answer
Turn 5: user asks a follow-up question
Turn 6 : system requests information



OutlineConclusion
• Contributions
• Introduce system initiative prediction (SIP)

• Propose multi-turn feature-aware CRF to capture two types of dependencies
• between adjacent user–system initiative-taking decisions
• between initiative-taking decision and multi-turn features

• Our method 
• achieves SOTA performance on SIP
• exhibits great transparency
• improves downstream action prediction task 

• Data and code open-sourced at https://github.com/ChuanMeng/SIP
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QR code for the repo

https://github.com/ChuanMeng/SIP


OutlineAppendix
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Given the user utterance at current turn and the conversational history at previous turns, 
predict whether the system should take the initiative or not at the current turn. Please 
output "yes" or "no". "yes" means the system should take the initiative at the current turn 
by asking a clarifying question or requesting feedback and so on; "no" means the system 
should not take the initiative at the current turn, e.g., giving an answer to the user.
Turn: 1
User utterance: {}
Should the system take the initiative at the current turn? {}
System utterance: {}
…
Turn: t
User utterance: {}
Should the system take the initiative at the current turn? yes/no



OutlineAppendix
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• WISE consists of conversations collected through crowdsourcing. Each conversation contains mixed-
initiative interactions between two workers playing the role of the user and system

• MSDialog consists of conversations that contain mixed-initiative interactions between users who ask for 
technical help and Microsoft staff or experienced product users (i.e., system) who help users solve their 
problems. 



OutlineAppendix
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• CQ: clarifying question
• IR: information request
• RV: revise;
• RC: recommendation
• OQ: original question
• RQ: repeat question
• FQ: Follow-up question
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SIP Action prediction Response generation

Flexibility



OutlineOutline

q Study 1: System initiative prediction for CIS (CIKM 2023) [12 min]

q Study 2: QPP for CIS: reproducing existing QPP methods in CIS (SIGIR 2023) [12 min]

q Study 3: QPP for CIS: improve QPP for CIS using query rewriting quality (ECIR 2023) [6 min]

q Conclusion [5 min]

22



Query Performance Prediction:
From Ad-hoc to Conversational Search

Chuan Meng, Negar Arabzadeh, Mohammad Aliannejadi and Maarten de Rijke
SIGIR 2023

23



OutlineBackground—Query performance prediction
• Query performance prediction (QPP)
• Predicts retrieval quality of search system for query without relevance judgments
• Widely studied in ad-hoc search

• QPP benefits a variety of applications, e.g., selective query expansion, query rewrite 
selection

24

query

Retriever 

User

Expanded query

Retriever QPP

QPP
QPP score

QPP score

Selective query expansion

Expand or not



OutlineBackground—Query Performance Prediction
• There are two types of QPP methods

• Pre-retrieval QPP methods 
• 𝑓 𝑞𝑢𝑒𝑟𝑦 → 𝑄𝑃𝑃	score

• Post-retrieval QPP methods 
• 𝑓 𝑞𝑢𝑒𝑟𝑦, 𝑎	𝑟𝑎𝑛𝑘𝑒𝑑	𝑙𝑖𝑠𝑡 → 𝑄𝑃𝑃	𝑠𝑐𝑜𝑟𝑒
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• Post-retrieval QPP methods
• Unsupervised post-retrieval QPP methods

• Supervised post-retrieval QPP methods 
• BERT 𝑞𝑢𝑒𝑟𝑦, 𝑎	𝑟𝑎𝑛𝑘𝑒𝑑	𝑙𝑖𝑠𝑡 → 	𝑄𝑃𝑃	𝑠𝑐𝑜𝑟𝑒



top 10 items

top 3 items

OutlineBackground—Conversational search (CS)
• Ad-hoc search vs. CS
• Self-contained vs. context-dependent queries
• Deeper ranked list vs. only top of the ranked list

User
Ad-hoc retrieverQuery rewrite
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OutlineMotivation
• Why do we need QPP for CS?
• QPP can benefit CS regarding, e.g., action prediction

• To what extent do findings from QPP methods for ad-hoc search generalize to CS?
• Motivate a reproducibility study
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OutlineReproducibility methodology

• Verify 3 findings on QPP for ad-hoc search:
• Finding 1: Supervised QPP methods outperform unsupervised ones
• (Datta et al., 2022; Chen et al., 2022; Arabzadeh et al., 2021; Hashemi et al., 

2019, Zamani et al., 2019) 

• Finding 2: List-wise supervised QPP methods outperform point-wise ones
• (Datta et al., 2022; Chen et al., 2022)

• Finding 3: Retrieval score-based unsupervised QPP methods perform badly in 
estimating the retrieval quality of neural-based retrievers
• (Datta et al., 2022; Hashemi et al., 2019)
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OutlineReproducibility methodology

• To what extent do the previous findings from ad-hoc search generalize to CS …

• (RQ1) … when estimating the retrieval quality of (for top-ranked items) different 
query rewriting-based retrieval methods?  

• (RQ2) … when estimating the retrieval quality (for top-ranked items) of a
conversational dense retrieval method? 

• (RQ3) … when predicting the retrieval quality for longer-ranked lists?
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• (RQ2) … when estimating the retrieval quality (for top-ranked items) of a
conversational dense retrieval method? 



OutlineExperiments
• Experimental design for RQ2:
• Predict the retrieval quality of conversational dense retriever, ConvDR (Yu et al., 2021) 

• Feed self-contained query rewrite into QPP
• Study the effect of feeding different query rewrites

• Generative query rewriting 
• Term expansion-based query rewriting 
• Human query rewriting
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OutlineExperiments
• Experimental settings:
• QPP methods
• 6 unsupervised QPP ones (5 score-based)
• 3 supervised QPP ones (2 point-wise, 1 list-wise)

• Datasets:
• CAsT-19, CAsT-20, OR-QuAC

• Evaluation metrics
• Pearson’s 𝜌, Kendall’s 𝜏 and Spearman’s 𝜌 correlation between actual nDCG@3

score and performance predicted by QPP methods
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OutlineExperiments for RQ2
• Results for RQ2:
• Supervised QPP methods vs. unsupervised ones
• Supervised QPP methods NQA-QPP (Hashemi et al., 2019), BERTQPP (Arabzadeh et 

al., 2021) achieve SOTA only when having large-scale training data
• Unsupervised score-based QPP ones WIG (Zhou et al., 2007), NQA (Shtok et al., 

2012) are still competitive, achieveing SOTA in the few shot setting

• Point-wise vs. list-wise
• Point-wise supervised QPP methods NQA-QPP (Hashemi et al., 2019), BERTQPP

(Arabzadeh et al., 2021) outperform the list-wise one qppBERT-PL (Datta et al., 2022)
in most cases

• Supervised QPP methods tend to perform better when fed with human-rewritten 
queries, especially when query rewriting is harder (CAsT-20)
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OutlineExperiments for RQ2
• Previous finding (Datta et al., 2022) found that the short range of retrieval scores returned 

by neural-based retrievers, such as ColBERT, would limit the performance of score-based 
unsupervised QPP methods

• Why score-based methods exhibit a good performance:
• The retrieval score distribution of ConvDR displays a higher variance than BM25
• Score-based methods are less impacted by the query understanding challenge
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OutlineTakeaway
• Takeaway
• Previous finding 1: Supervised QPP methods outperform unsupervised ones

• We found
• Supervised QPP ones distinctly outperform unsupervised ones only when a large 

amount of training data is available

• Unsupervised QPP ones show strong performance
• In cases of insufficient training data
• When predicting the retrieval quality for deeper-ranked lists
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OutlineTakeaway
• Takeaway
• Previous finding 2: List-wise supervised QPP methods outperform point-wise ones

• We found
• Point-wise QPP ones outperform list-wise ones in most cases

• List-wise QPP ones
• Are more data-efficient
• Show a slight advantage for deeper-ranked lists
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OutlineTakeaway
• Takeaway
• Previous finding 3: Retrieval score-based unsupervised QPP methods perform badly 

in estimating the retrieval quality of neural-based retrievers

• We found
• Score-based QPP methods are still competitive when assessing a conversational

neural-based retriever, either for top ranks or deeper-ranked lists

• The effectiveness of score-based QPP methods relies on the retrieval score 
distribution of a specific retriever
• A neural-based retriever can have a higher variance than lexical-based one
• The greater variance in the retrieval score distribution, the better

performance observed in score-based QPP methods
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OutlineConclusion
• Contributions
• A comprehensive reproducibility study into ad-hoc QPP methods in CS
• The data and code are open-sourced https://github.com/ChuanMeng/QPP4CS

37QR code for the repo

https://github.com/ChuanMeng/QPP4CS


OutlineExperiments for RQ2

38

• Turn-wise QPP effectiveness
• Supervised QPP methods are more sensitive to the actual retrieval quality
• QPP effectiveness goes up/down as nDCG@3 scores go up/down



OutlineSuggestions for future work
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• Solve the query understanding challenge  
• Improve query rewriting quality
• Develop a QPP-specific conversational context understanding method

• Utilize few-shot learning techniques
• Improve supervised QPP methods Leverage unsupervised QPP methods
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OutlineOutline

q Study 1: System initiative prediction for CIS (CIKM 2023) [12 min]

q Study 2: QPP for CIS: reproducing existing QPP methods in CIS (SIGIR 2023) [12 min]

q Study 3: QPP for CIS: improve QPP for CIS using query rewriting quality (ECIR 2023) [6 min]

q Conclusion [5 min]
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Performance Prediction for Conversational Search 
Using Perplexities of Query Rewrites

Chuan Meng, Mohammad Aliannejadi and Maarten de Rijke
QPP++2023 (ECIR 2023)
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OutlineMotivation

• Lower query rewriting quality tends to result in lower retrieval quality
• Query rewriting quality provides evidence for QPP
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OutlineMethodology

• How?
• evaluate the query rewriting quality
• perplexity 

• inject the quality into the QPP
• linear interpolation

• 𝑓𝑖𝑛𝑎𝑙 𝑄𝑃𝑃 𝑠𝑐𝑜𝑟𝑒 = 𝛼 ? !
"#$"%#&'()

+ 1 − 𝛼 ? 𝑄𝑃𝑃 𝑠𝑐𝑜𝑟𝑒
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OutlineExperiments
• Experimental settings:
• baselines: QS, SCS, avgICTF, IDF, PMI, SCQ, VAR
• retriever: T5 query rewriter [1] + BM25
• target metric: nDCG@3 
• perplexity measurer: GPT-2 XL (1.5B parameters) [2]

[1] https://huggingface.co/castorini/t5-base-canard
[2] https://huggingface.co/gpt2-xl
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OutlineExperiments
• Observations:
• lower quality tends to lead to worse QPP effectiveness
• PPL-QPP improves QPP effectiveness on CAsT-19 and, in particular, CAsT-20
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OutlineConclusion and Future Work
• Contributions
• propose PPL-QPP that incorporates query rewriting quality into QPP methods.
• PPL-QPP improves QPP effectiveness if the query rewriting quality is limited. 
• The data and code are open-sourced https://github.com/ChuanMeng/QPP4CS

• Future work
• incorporate query rewriting quality into post-retrieval QPP methods
• the choice of evaluator (LLMs) for measuring the quality of query rewrites

QR code for the repo

https://github.com/ChuanMeng/QPP4CS
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q Conclusion [5 min]
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OutlineConclusion and Future Work
• Contributions
• System initiative prediction (SIP) for CIS
• Query performance prediction (QPP) for CIS

• Future work
• Apply QPP to SIP
• Modeling SIP and response generation jointly
• Enhancing retrieval-augmented generation using QPP



Thank you!
Chuan Meng

c.meng@uva.nl
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